PHYSICAL REVIEW E VOLUME 55, NUMBER 5 MAY 1997

Vortex annihilation in the ordering kinetics of the O(2) model
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The vortex-vortex and vortex-antivortex correlation functions are determined for the two-dimensi@pal O
model undergoing phase ordering. We find reasonably good agreement with experimental and simulation
results for the vortex-vortex correlation function where there is a short-scaled distance depletion zone due to
the repulsion of like-signed vortices. The vortex-antivortex correlation function agrees well with experimental
and simulation results for intermediate- and long-scaled distances. At short-scaled distances the simulations
and experiments show a depletion zone not seen in the th&1963-651X%97)00205-3
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[. INTRODUCTION that we see evidence for a repulsive interaction. The vortex
: . interactions emerge naturally in the theory from the equation
Th_e Iate-stage ordering of s_ystem§ in the process o f motion for the order parameter. In Fig. 2 we show the
breaking a continuous symmetry is dominated by the dynamyq ey _antivortex correlation function for theory, experiment
ics of topological defects. In the case of thevector model [6], and simulatio5]. There is good agreement between the
with the number of components of the order parameter theory presented here and the experimental and simulation
equal to the spatial dimensionality one has point defects gata at large- and intermediate-scaled distances. There is a
that are vortices fon=2 and monopoles fon=3 [1]. We  clear discrepancy between theory and simulation results at
focus mainly on the case=d=2 here. Because of the con- short-scaled distances. The theory shows a monotonic behav-
servation of topological charge, ordering in these systemir as the separation distance goes to zero. The simulation,
occurs through the charge conserving process of vortexaowever, shows a maximum at short separation distances
antivortex annihilation. The statistical description of this an-and then falls rapidly to zero. Although somewhat noisy, the
nihilation process will be a central focus of this paper. Weexperimental data also have a depletion zone at short-scaled
present here a calculation for the separate vortex-vortex andistances, in contrast to the theory. The depletion zone seen
vortex-antivortex correlation functions. Knowledge of thesein the experimental and simulation data for the vortex-
functions is an important ingredient in understanding theantivortex correlation function is harder to understand phyS|'
vortex annihilation process. Since these functions contain decally since the defect pair is attractive and headed toward
tailed information about the vortex correlations, comparisorfnnihilation. Some possible explanations will be presented in
of our results with simulation and experiment provides theSec. VIII. While the theory satisfies the sum rule implied by
most stringent test of the theory to date. In the original worktopological charge conservation, it does not appear that this
[2] in this area only the signed defect correlation functiongeneral constraint is satisfied by the simulations.
was computed. The unsigned quantity is technically much
more difficult to evaluate as we discuss in this paper. The Il. MODEL
comparison of the result for the signed quantity with experi- . .
ments and simulations was confused by the use of a theor: h‘.’Vﬁ co(;]5|de_rb thm-vEctor (rjnodel_wnh Oi(]) symmetry,
[3] that led to unphysical singularities at short distances in Ic escribes  the ynamics o fi noncon-
this quantity. The source of this singularity was recently un-Served, —n-component  order-parameter  field /(1)
covered by ug4] and the theory reorganized so as to give = (#1(1), . .. .#n(1)). Here we use the shorthand notation
physical results for the signed defect correlation function1=(r1,t1). The order parameter evolvesia the time-
This development motivated us to make a renewed effort télependent Ginzburg-Landau equat|Gi
evaluate the unsigned defect correlation function, with the 23 NI
results presented here. Y _v?j [¢] 2.0

We show in Fig. 1 the vortex-vortex correlation function at o
for the two-dimensional @) model obtained from the
theory developed here and from cell-dynamical simulationsvhich can be derived from a free energy containing a square-

by Mondello and Goldenfeld5]. Experiments by Nagaya gradient term and a potential term #/]. We assume that the

et al. [6] on two-dimensionally aligned nematic liquid crys- quench is to zero temperature where the usual noise term on
tals, which mimic the @) model, have been able to measurethe right-hand side of Eq2.1) is zero[7]. The potential

the dynamical vortex correlations. The experimental data arg, 7] is chosen to have @] symmetry with a degenerate
also shown in Fig. 1. There is reasonable agreement betweeri S . - .

the theoretical curve and the data from experiment and simy2et of e_q“"'b”“rl‘ ml_nlma §¢=|'//| - ’/’_0' Since only these
lation. All show a depletion zone at short-scaled distancegroperties ofV[y] will be important in what follows we

for like-signed defects. This is expected on physical groundseed not be more specific in our choice #ri]. It is be-

since like-signed defects repel one another. It is nontrivialieved that our final results are independent of the exact na-
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FIG. 1. The scaling fornC,, (3.19 as a function of the scaled length=r/L(t) for the vortex-vortex correlation function of the
two-dimensional @) model. The solid curve is the result of the theory presented here. The solid@pigfresent the simulation data of
Mondello and Goldenfeld5]. The experimental data of Nagaga al. [6] on two-dimensionally aligned nematic liquid crystals are also
shown. The experimental data were taken at timeg sec (J), t=8 sec (¢), t=12 sec ), t=16 sec {\), t=24 sec &), and
t=32 sec ) following the quench.

ture of the initial state, provided it is a disordered state. In- C(12)E<¢Zx(1)- 1,71(2)> 2.2
deed, it is well establishel@] that for late timeg following

a quench from the disordered to the ordered phase the dyras an equal-time scaling form

namics obey scaling. In this regime, where order increases as

the defects annihilate, the system can be described in terms C(r,t)= zﬁ%]-‘(x), (2.3
of a single growing length.(t), which is characteristic of the

spacing between defects. At late times the order-paramet&vhere 7 is a universal function, depending only enand
correlation function d. The scaled lengthx is defined asx=r/L(t) with

FIG. 2. The scaling fornt,, (3.20 as a function of the scaled lengii+r/L(t) for the vortex-antivortex correlation function of the
two-dimensional @) model. The solid curve and the symbols are defined as in Fig. 1. The abscissa of the simulatj&ih idatealed to
give the best fit to the theory at intermediate to laxg&he same rescaling factor for the simulation data is used in all the figures. No such
rescaling of the experimental ddi] was necessary in any of the figures.
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r=|r|=|r,—r4|. The scaling hypothesis states that all two- Go(r,1)=(p(1)p(2))=ng(t)8(r)+Gy(r,t). (3.7
point correlation functions can be written as universal func-

tions of x. It is also well established that, in the scaling The first term in Eq(3.7) represents self-correlations and
regime,L(t)~t®. For the nonconserved models considered

here the exponenp=1/2[9]. No(t)=(n(1)) (3.9
is the average unsigned point defect density at tinig1].

Ill. GENERAL FEATURES OF POINT DEFECTS The second term in Eq3.7) is
Let us briefly review the theoretical picture associated as(r,t)=(ﬁ(1)5(2)> 3.9

with topological point defects. The results of this section are

quite general and hold independent of the particular dynamang measures the signed correlation between different de-

ics, such as Eq(2.1), or the approximation scheme, such asfects, |t is easy to see that the signed defect correlation func-
the Gaussian approximation, used to model the system. Thg)n G, can also be decomposed as

vortex charge density can be written in the form
Gs=2C,,—2C,,, (3.10

p(l)=§a: QaS(r1—X4(ty)), 3.1 whereC,, is the correlation function between like-signed
vortices andC,,, is the correlation function between vortices
wherex,(t,) is the position at time, of the ath point de- ~ and antivortices. _ . _
fect, which has a topological charge . We will restrict the We define the equal-time unsigned defect correlation
analysis here to the case of chargel vortices where function as

g,=1. This case dominates the late-stage ordering since _ _ ~
higher-charged defects are energetically unfavorable and dis- Gu(r.t)=(n(1)n(2))=no(1) 8(r) + Gy(r.t) (3.1

sociate into charge-1 defects early on. with
The next step is to note, as pointed out by Halpgtidl,
that the positions of defects are located by the zeros of the éu(r,t):<ﬁ(1)’ﬁ(2)>. (3.12
order-parameter fieIdZ. Therefore the charged or signed ) _ ) .
density for point defects is given by As with the signed quantity, one can wriig, in terms of the
vortex-vortex and vortex-antivortex correlation functions:
p(1)=6(4(1))D(1), (3.2 G,=2C,,+2C,,. (3.13

where the Jacobia® associated with the change ofvariableslnverﬁng Egs.(3.10 and (3.13 and using Egs(3.7) and
from the set of vortex positions to the fielZzi is defined by (3.11) one has

_1 Cou(r)=3Ng()3(N+Cp(r,1), (314
D(l) n_| I IR Y R L YRR vy

_1lr& G

Xvﬂllﬂylvﬂzlﬂyz' . V,unllfynv (33) Cva(r!t) 4 [Gu(r!t) Gs(rrt)]1 (315)
where

whereale,M2 ,,,,, o is then-dimensional fully antisymmetric _ _ _
tensor and summation over repeated indices is implied. The Couo(r,t)= Z[Gy(r,t) +Gy(r,b)]. (3.19
unsigned densityn(1), does not consider the charge of the ) )

defect and is given by As one would expect, for the vortex-antivortex correlations,

there is nod-function contribution from self-correlations.
- We are interested in the correlations between different
N(1)=2 8r1—X.(t)=[H(DIDD)|. 34  yoriices and antivortices in the scaling regime, where the
‘ correlations assume scaling form dependent only on the
If we have products of such densities at equal timesScaled lengtkx. We define
t,=t,=t, we write

Gg(r,t)
Gs(x)= (D12 (3.17
p(l)p(2)=5(r1—rz)§ 8(ri—x.(1)+p(L)p(2). (3.9 °
Gy(r,t)
We use the tildes in Eq.3.5 to indicate that the product Gu(x)= [no(t)]%’ (3.18
p(1)p(2) contains only terms arising from different defects.
We can also write 4C,,(r,1)
o Co 0= o =900+ Gu(x), (319
p(1)p(2)=8(r =N +p(15(2). (3.6 o
The equal-time charged or signed defect correlation function _A4Cu,(rt)
is givgn by the avergge of E(?3.6) CoalX)= [no(t)]? = Gu(X) = Gs(x). (320
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Both C,,(x) and C,,(x) are normalized to approach 1 as n>1 this is not the case. One finds a weak nonanalytic com-

X— 00, ponent inf and, more significantly, fon=2 one can trace
Since the topological charge is conserved, one has thehis non-analytic component to an unphysical divergdi2¢e
very important constrairtl0,11] in the scaling form for the signed vortex correlation function

Gs(x) at smallx. In previous work{4] for n=2 we showed
) how these problems can be resolved by taking seriously the
assumption that the correlations of the auxiliary field are
indeed smoother than those of the order parameter. We find
Using Eq.(3.7) this conservation law can be written in the that it is possible to rearrange the theory such fhit ana-
form Iytic in x if we extend the theory to include fluctuations
about the ordering field and treat the separation between the
J ddr(~ss(r,t)= —no(t). (3.22 ordering field_a_md the fluctuation field carefully.
More specifically we can decompose the order parameter

f dIrG(r,t)=0. (3.2

Theory, simulation, and experiment indicate that the scalindb as
results(3.17—(3.20 and the result

J=o[m]+u. (4.2)
A > .
Ne(t) = 90 (3.23 o is chosen to reflect the defect structure in the problem and
® is of O(1). u represents fluctuations about the ordering field
where A is a constant, hold. Inserting these results in Eqo and is of O(L™?) at late times. The defect structure is

(3.22 leads to the relation incorporated by demanding thatsatisfy the Euler-Lagrange
equation for the order parameter around a static defect in
J' dIxGy(x) = — E (3.24) equilibrium. This determines as a function ofm. Since we
s A expect only the lowest-energy defects, having unit topologi-

) ] cal charge, will survive to late times we obtd3]
A measurement ofiy(t) and a choice foL (t) fixes A, al-

lowing one to check that the sum rul@.249) is satisfied. As c}[rﬁ]zA(m)fn. (4.2)
shown in[2] our theoretical results satisfy this sum rule ex-
actly. In [3] it was shown tha# increases linearly from zero near

The results presented above are rather general. To evalthe defect core and relaxes algebraically to its ordered value
ate G explicitly one can use the Gaussian closure approxia= , for large mE|rﬁ|_

mation,. as was .done [Q]. The evaluation qu i_n this same Evolution under Eq(2.1) causes} to order and assume a
approximation is technically much more difficult than the yistribytion that is far from Gaussian. However, it is reason-

calculation ofGs because of the absolute value sign in thegpe 1o assume that the probability distribution for the auxil-
definition (3.4) of the unsigned defect densitf1). Thepur- . ) > ; .
iary field m will be near a Gaussian. Indeed, a simple and

gosear:)cli‘ Cthlas Fnapsircés \t/? r:r? dm\[;”%\fe ig?r;hoef%:g;ﬁlﬂ_ successful assumptidrid] to make is that the probability
vv va- *

lation with explicit results fom=d=2. First, however, we distribution form is Gaussian with the correlation function
must briefly review the calculations of the order-parameteCo(12) explicitly defined through
scaling function and the signed defect correlation function . . _ s
within the Gaussian closure approximation. (mi(1)m;(2))= 8jCo(12). 4.3

The system is assumed to be statistically isotropic and ho-
IV. THE GAUSSIAN CLOSURE APPROXIMATION mogeneous s€&€,(12) is invariant under interchange of its
atial indices. For future reference we also define the one-

. . . S
Substantial progress has been made in determining t'}?@int correlation function

order-parameter scaling functiaf using the theory devel-
oped in[12]. In this and related theories, one expresses the So(1)=Cq(11) (4.9
order parameterZ(r,t) as a local nonlinear function of an
auxiliary field ﬁ(r,t), which is physically interpreted as the
distance, at time, from positionr to the closest defect. One

and the normalized correlation function

n Co(12)
of the physical motivations for introducing(r,t) is that it is f(12) = ———. (4.5
smootherthan the order-parameter field. Sharp interfaces or VS0(1)S(2)

well-defined defects produce a nonanalytic structure in theS. the ch teristic dist betw defect
order-parameter scaling functiafi(x) at small-scaled dis- Incem measures the characteristic distance between detects
t is expected to grow ak in the late-time scaling regime.

tancesx, which is responsible for the Porod’s law decay seen_, : 5 .

in scattering experimen{d 3]. The expectation, however, is his Tgans thaCo andSy grow asL -at late t|m§s. N
that the auxiliary field correlation functiof(x), defined be- If mis treated as a Gaussian variable then its probability
low, will be analytic in this same distance range. In the casélistribution is characterized by the single functibnThis

of a scalar order parameter these expectations are supportgtiction can be determined by requiring that the equation of
by the theonf12]. However, for the simplest theof®] with ~ motion foro be satisfied on average. [4] it was shown that
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for n=2 this requirement produces the following late-time , 1 .1
scaling equation for the equal-time order-parameter correla- s?= —2([Vm]%)=— (5.5
tions:
- - in this theory. The defect density is given by
- = o T T _
XV F+ViF 4M.7—'+ ZMfaf}' 0, (4.9 o s
No(t) = 5 (5.9
where, for generah, F is related tof via 2T (1+ni2) [ 27S(1)
nf (1 n+1) (11 n+2 Equation(5.6) leads to the resulbhg~L ™", which is just a
= on 5 5 Nl 2) 4.7 restatement that there is scaling in the problem governed by

the single length_(t).

Since f is determined in the theory for the order-
parameter correlation function, the functi@(r,t) is fully
determined in the scaling regime. The derivatives in Egs.
(5.2 and (5.3) make G(x) a rather sensitive function of

f(x) for small x.
L2(t)= WSO;U 4t. 4.8

Here B is the beta function andr is the hypergeometric
function [3,15]. In the derivation of Eq(4.6) we have de-
fined the scaling length

VI. CALCULATION OF éu
With the theory in this form there will be no leading small-
X nonanalyticities in the normalized auxiliary field correla-
tion function f and the smalk divergence in the scaling
form for the signed vortex correlation function found in ear-
lier theories does not appear. The calculation of the scallng
form for F (and thusf) reduces to the solution of the non- ~ - -
linear eigenvalue problert4.6) with the eigenvalugu. The Gu(r,) =L DIDD|L¢(2]D2)]). (6.1
eigenvalue is selected by numericdy] finding the solution
of Eq. (4.6), which satisfies the analytically determined The first step is to realize that one can replagcey m in Eq.
boundary behavior at both large and small (6.2) and write Gu in terms of integrals over the reduced

probability distributionG(¢4,£5):

The equal-time unsigned defect correlation function
Gy(r,t) (3.11 can be evaluated through a series of steps. We
work with generah. The average that needs to be computed

Eq.(3.12:

V. THE SIGNED DEFECT CORRELATION FUNCTION

The calculation of34(r,t) (3.7), carried out i 2], begins au(r,t)ZJ IT d(&))},d(£) 5 D(EDIID(£:)IG(£1.£2),
with the observation thafy andm share the same zeros, and g 6.2
that near these zeros we can use @) to write

. . . where
y=apm+bom?m+ - - -, (5.2)

wherea, andb, are constants that depend on the potential. ItD(§) = PYITT TRERR IRy Vng,vflﬁffz' . f;’; (6.3
is then easy to see that in Ed8.2) and(3.4) for p(1) and

n(1) we can replacg/(1) with m(1) and the factors o,  and

andb, all cancel. Then, agsumirr@ is a Gaussian field, it is

L of Gauseian averages, hich can be evaluated aing stan (€1 €2)=  A(LISLAIIT al(€0);~¥,m, (1)
dard methods. One then finds th@t(r,t) indeed has the
scaling form(3.17) with G4(x) given by[16]

X3 (&) —V,m,(2)]). (6.4
I'?(1+n/2) 8,/,) h(x)]"~* ah(x) 5 o
Gs(x)= n! s X X (6.2 The indicesu and v range from 1 ton, unless stated other-
wise. The Gaussian average definiB¢é, ,&,) is calculated
with in Appendix A. It is shown there how one can write
o G(&1,¢,) interms of the longitudinal and transverse compo-
h= _ 72’_77 5.3 nents of the rotated varlablegxz (j=1or 2) defined by
(t) L =M%4(&) 5, (6.5
_ 1 5.4
v 1—f2’ 4 whereM is an orthogonal matrix. We define the longitudinal

piece oft; as ;) =(t;); and write ¢;) to denote the trans-
and verse pieces:t(), with 4>1. One then obtains
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G(tl.tz)=(%) GL(E)L (TGt (1)),

(6.6
where
> > yo\" YE
GL((ty).(tp))= 2—S|_) eXp—E
X ; (fE-2f (T ()], (6.7
n(n—1) 2
Gr((ty)r,(t2)7)= ﬁ) exp—zy—STT
x| 2 2 [(t)n1?
n=2 vj
—2le§2 2 (t)(t2) (6.8

The longitudinal quantities, , f,, and y, are defined in

terms ofCy and Sy through

’}’2
S=8%-(Co)% (6.9
n fyz ’
CL=—-Co— g(co)z. (6.10
foot 6.1
L_S_L! ( . :D
=(1-fH)~ L (6.12
The corresponding transverse functions are
Sr=8%, (6.13
Co
Cr=— T (6.14
f= T (6.1
T ST ’ .
Yi=(1-fH* (6.16
Since the matrixVl is orthogonal we have
D(§;)=D(t;)) (6.17

SO we may write
v v y \"
u(r )= gd(tl)ﬂd(tz)ﬂ|D(tl)||D(t2)|(m)

XGL((T1)L, (T2 )GT((ty) 7, (t2)7)- (6.18

Under the change of variables,

GENE F. MAZENKO AND ROBERT A. WICKHAM 55

({j)L: \/iz(gj)L (6.19
YL
and, foru>1,
()= \/ST<sJ v (6.20
YT
au(r,t) becomes
= |7 "S(Sp"t (n+2) _—(n+2)(n—1)
Gy(r,t)= 27TSO> 2m" L 4
XN f1,f), (6.2)
where

At t0= [ IT d(su);d(s2)2I2(s0)1D(s2)

1 . R ..
X exp— E[(sl)fwt(sz)ﬁ—zn(sl)g (s2).]

1
X exp— 5,;2 2;, {5012 +[(s5)"]2

fr(s1) .(s2) .} (6.22

Equation(6.21), with the definition(6.22), is one of the cen-
tral results of this paper. If we had taken this route in evalu-
ating G; we would have arrived at these same equations,
only without the absolute value signs in E&.22. In the
next section we will examine the=d=2 case and go fur-
ther to derive an expression f@, that is convenient for
numerical work.

However, first we examine the general expressig21)
for G, in the smallx limit. We show in Appendix B that, in
the scaling regime, ax—0, f;—1 and, surprisingly,
f,— —1. To examine this limit foiG, we make the change
of variables

(s1)y, J—qb + X0 (6.23
1 1
(Si= =4 3 (6.24
for u>1 with
and, foru=1,
14 1 14 l v
(Sl)LZ—\/TkoF XL (6.26
L
14 1 14 1 14
(SZ)L:\/T¢L+§XL1 (6.27
L
with
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Then aset ande; go to zero the arguments of the exponen-

tials in Eq.(6.22 go over to

[(s0),12+1(s2) 12— 2f1(s) u(S2) = [ 12+ [x}.]
(6.29

for u>1 and

—2f (S (S)L=[ L 1P+ xL1? (6.30

for u=1. The important point is that, ag§ and et go to
zero, the Jacobiar® transform as

(51)L+(32)

-1 1
D(sy)= I Tn—l)/zp(dﬂ, (6.31
L
1 1
D(sp) = T WD(QS)- (6.32
L

5119

If we now specialize Eq96.21) and (6.22 to n=d=2
then the unsigned vortex correlation function is given by

~ 2V L, L,
Gy(r,H)=[no(t)]? 2 )4%_ fyr Mt f) (7D

with
N, fL)= f d2s,d%s,3(S1,S)
Xexp — 3[5,2+5,2—2f.8,-8,]), (7.2
where
\](§1,§2):J d?xd?y]s11X, — S1X1 ] S21Y2— Sp2Y 1
Xexp(— 5 [x2+y2—2fx-y]). 7.3

We have simplified the notation by Writiné in place of

Thus the Jacobians differ Only by a Slgn in this limit and We(s )L and us|n@( andy in p|ace of $1)T and (SZ)Tl respec-

have

ID(s1)||D(s2)|= = D(s1) D(s7) (6.33

asx—0. Since the scaling form for the unsigned defect cor-

relation functionGy(x) is, up to a factor of ny(t)]?, given by

tively. The jth component ofs is written s;; . The quantity
J is evaluated in Appendix B with the clean result

Egs. (6.21) and (6.22 without the absolute value signs we where

see thaG,(x) differs from G4(x) only by a sign
gu: - gs (6.39

as x—0. The relations(3.19 and (3.20 then lead to the
results

limC,,(x)=0 (6.39
x—0
and
limC,4(x)=—2G40). (6.36

x—0

Thus there is a depletion zone at short-scaled distances for
like-sighed defects. From previous work we know that

(81,52 =2my4/51/8,13(9) (7.4
j(g)=4\/1—g+4@tan‘1\/lg—g (7.5

and
g="12(s1-5,)% (7.6

Notice thatg depends only on the angle betwesnands,
and not on their magnitudes. We can then separatd7E2).

into an integration over magnitudes, followed by an overall

integration over the angular piece:

M, f)=2m)%y f ded g)f ds,ds,s?s3

G<(0)<0 [4] so the theory gives a nonzero, positive correla-

tion at short-scaled distances for unlike-signed defects. These

are general results and depend only on the Gaussian assump-

tion, used to derive Eq(6.21), and the particular smax-

behavior off, which, as is shown in Appendix C, determines

the smallx behavior of the quantities; and f_.

VII. TWO-DIMENSIONAL O (2) MODEL

We have not yet been able to explicitly evalugtgx) for
generaln=d, except for small and large Here we special-

ize to n=d=2. Much theoretical work has recently been
done on this case and detailed results are available for the

auxiliary field correlation functiorf (x). An additional moti-

vation for examining this case is that simulation and experi-
mental results exist for the vortex-vortex and vortex-

antivortex correlation functions.

xexp— 3 [si+s5-20,5:5,]), (7.7
where we have defined
9.=f5-S (7.9

ands; - s,= cosf. Expanding the exponential in E(7.7) as a
power series irg, and performing the integrations over the
magnitudess; ands, we obtain

N, f)=(2m7)%y f ded(g

(7.9

”(go Jreapef1 3
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—2.0 x 1 1 1

X

FIG. 3. The scaling forng (3.17 as a function of the scaled leng#=r/L(t) for the signed vortex correlation function of the
two-dimensional @) model. Atx=1 the lower solid curve is the prediction of the original the[®)8] that does not treat fluctuations, and
the upper solid curve is the result for the theory presented here, which does include fluctuations. The symbols are defined as in Fig. 1.

The symmetries ofj and g, under §— #— = allow us to  x=0.0001 this is not a real problem—we just have to sum up
restrict the region of integration in E¢7.9) and we use the more terms to achieve a set accuracy. The integration over
definition (3.18 for the scaling form to write the final result ¢ is straightforwardly accomplished using an open Newton-
for G,: Cotes algorithm.
) Using the relation$3.19 and (3.20 we have calculated
G (x)— SLYL f d0J(g) the results forC,,(x) and C,,(x), which are presented in
u Figs. 1 and 2, respectively. As expectéd,(x) has a deple-
tion zone at smalk, which has a characteristic size=1
[|r|=L(t)]. In contrastC,,(x) shows enhanced correlations
' (7.10 in the same range of. We present the results f@j; and
G, in Figs. 3 and 4. Also shown in Fig. 3 is the result of the
whereS, , f,, andf; are now functions of the scaled length earlier theory[2,3] for G5, which displays the divergence
X. The integral ove and the sum ovelr have to be evalu- resulting from neglecting fluctuations. These four figures dis-
ated numerically. play the main results of this paper.

For largex the functionsf, f+, andf,_ are all small and Also shown in these figures are the results of Mondello
Eq. (7.10 simplifies since only the first two terms in the and Goldenfeld's cell-dynamics simulati¢s], based on the
series need to be retained to give the essential physical fetime-dependent Ginzburg-Landau equation for th€2)O
tures. In this limit the integral ove# is easily performed and model. The lattice size used was 54212. The simulation
one has data for the scaling forms of the vortex-vortex and vortex-
antivortex correlation functions were taken directly from
Figs. 8 and 9 of5]. The experimental data of Nagagaal.

[6] are also shown. Relatior§8.19 and(3.20 were used to
calculateG; and G, for simulation and experiment. There is
Since all off, f{, andf_ decay ase "2 for largex [4],  only one adjustable parameter in all these fits, which is the

21+

(90 22+1p2
XE —

(2|)'

1 4u
Gu=1+124 Z(fE+ 1) — —(f")2 (7.1

G, rapidly approaches 1 asincreases. (unknown proportionality coefficient between the scaling
lengthL(t) used in the theory and that used in experiments
VIIl. COMPARISON OF THEORY AND SIMULATION and simulation$17]. We use this freedom to adjust the hori-

zontal scale of the simulation data in Fig. 2 to give the best
In our previous work4] we numerically solved the eigen- match between theory and simulation at intermediate to large
value problem(4.6) and determined the functidi(x) repre-  x. The same scaling factor is used to rescale the simulation
senting the scaling form for correlations in the auxiliary data in the other three figures. It is amusing to see that in Fig.
field. With this information we can use E(7.10 to deter- 3 this rescaling causes the minima of the simulation data and
mine G,(x) since for eaclx at which we knowf(x) we can the theoretical curve for the earlier thed8] to coincide. No
calculatef, , ft, andS, and perform the sum ovdrand such rescaling of the experimental data was necessary. Fig-
then the integration oved. The sum diverges algy | —~1  ures 1 and 2 show reasonable agreement between the theo-
(x—0 and #—0) but since the smallest we consider is retical curve and the data from experiment and simulation
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2.0 - :

T

FIG. 4. The scaling fornG, (3.18 as a function of the scaled lengi+r/L(t) for the unsigned vortex correlation function of the
two-dimensional @) model. The solid curve and the symbols are defined as in Fig. 1.

except for the short-distance behavior@f,. This discrep- lations among like-signed vortices found here meet with our
ancy is directly related to the behavior@f. Since we know expectation that vortices with the same charge repel one an-
that the theoretical expression f@g satisfies the sum rule other at short-scaled distances and that screening of this re-
(3.24), the question is whether this sum rule is satisfied byPulsive interaction causes the correlations to fall rapidly to
the simulation and experimental data. We have found thagero at large-scaled distances. The case of correlations be-
the simulation data presented|[i] lead to the result tween unlike-signed vortices seems straightforward from the
theoretical point of view. Since these pairs are attractive
there is an increasing probability of finding pairs on their
—Af d9xG4(x)=0.85+0.05, (8.1 way to annihilation as one goes to short-scaled distances.
The experimental and simulation results seem at odds with
his simple physical interpretation. One argument around the
onotonic behavior of the vortex-antivortex correlation
; ) . ; ~function is that the annihilating pair is speeding up in the late
Figs. 8 and 9 ofS], using the fact that In units of the scaling g¢a4e of annihilation and therefore the probability of finding
length they use in these figures(t)=L"“ so A=1. The  he pair separated by a short distance is commensurately de-
error estimate in .Eq.2_3.1) is due to the.uncertamnes in read—_ creased. In recent calculatiofs9], using fundamentally the
ing the data, which is somewhat noisy, from the figures insgme theory as the one presented here, one of us found that a
[5]. Since the value foA used in[6] is unknown and the mechanism already exists in the theory to produce large vor-
data are noisy, we have not attempted to calculate whetheex velocities. These large velocities are inferred from a
the experimental data satisfy the sum rule. What could acpower-law tail in the vortex velocity probability distribution.
count for the breakdown in the sum rule seen in simulationsBray [20] has shown that this tail results from scaling argu-
First, there is the possibility of a breakdown in scaling and aments applied to the late stages of the vortex-antivortex an-
violation of the scaling relation$3.17) and (3.23. This  nihilation process. Thus it appears that this speeding up pro-
seems incompatible with both experimental and simulatiorcess is included in the present analysis.
results when viewed as a function of time. A second, more In order to better understand the nature of the correlations
likely, possibility is that there are some missing vortex-between vortex-antivortex pairs, it would be instructive to
antivortex pairs in the simulations. We speculate that thera&vork out the joint probability of having a vortex at position
may be a problem keeping track of annihilating pairs at With velocity v, given that there is a vortex at the origin
short-scaled distances where they may have a very high rel¥th velocity v;. This calculation is under current investiga-
tive velocity [18]. This problem, which might also occur in ton: » o _
the experiments, may be the source of the short-distance di‘s/\-/ One of the remaining unresolved questions is as follows:

crepancy i, , between the theory and the data from experi- 15 218 (1% MES10 Jon S Al AveX bae 1 108 SPCrE
ments and simulations. ! prog

this discrepancy is understood.

which is less than the expected value of unity. We are able t
compute this quantity directly from the data contained in
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X 5[(52)Z—V,Lmv(2)]> (A1)

APPENDIX A ~
appearing in the integral formulé6.2) for G,(r,t). We

We derive an expression for the reduced probability dis-evaluate this Gaussian average for equal titpest,=t. The
tribution, 6 functions can be represented as integrals and one has

d" ), d(K2),,
61616~ [ g o] T3 G s koexp- ()6 (A2)

where we have defined

T'(01,02.k1.Ko) = (exp—i[q;-m(j) — (k) .V ,m,(j)]). (A3)

In these formulas summation over the repeated indices, andj is implied. The summation overis from 1 to 2, while the
summation ovep andv is from 1 ton, unless stated otherwise. Expressif) is of the standard form for Gaussian integrals

R — 1f — — . —
<exp{ le(l)-m(l))>=exp<§f d1d2H(1)-H(2)Cy(12) |, (A4)
so a straightforward calculation yields
2I0(d Gz Ka ko) == So 2 %= S 2 (k)12 2Co01- bz +2) Col (ka) 1057~ (k2) 017 ]
§72%
n C(,) a C,
+| Com7 (kl)M(kz)Vr,JV‘*‘ 2 (ky)! w(K2)y. (AS5)

where primes indicate differentiation with respect t@his expression can be clarified if we introduce the orthogonal matrices
M’ where

MEML=MIME=6,, (A6)
and
M{=r,, (A7)

and then transform to the new variable#j, defined by
(W))5=M4(K))%. (A8)
We then obtain
(01,02, Wy, Wo) =exp{— 3 [A(Gy,02) + AL(Wy) L, (Wo) )+ Ar((Wy) 1, (Wo) 1) +Ac(dy,02, (W) L (W) )]}, (A9)

where W;)/=(W,); is the longitudinal part o®; and (W) is shorthand notation referring to the remaining transverse parts
of W; [(Wj),, with u>1]. With this choice of variables we notice thitcan be factored into a transverse and a longitudinal

piece. We see that for our purposes we are not required to be more explicit thai&gand (A7) in defining the|\7|;. The
guantities appearing in the exponential in E49) are

A<al,<iz>=so; 9;2+2Co0y- 0z, (A10)

AL(Wy), ,(W2>L)=s<2>§ [(W)) 12— 2CH(Wy), - (Wy),, (A11)
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AT«wl)T,(wz)T)——zTE 2 (W) (Wo),+ 8% 20 3, [(W)),T% (A12)
u=2 v
Ac(T1,G2,(Wy)L (W) )=2C[ Gy (Wo)| —da- (Wy),]. (A13)

One can integrate EGA9) over g, andd. to obtain

I'(W;,W,)= dha, ', 2 (GG W W) = | 5 )nexp( —E[A’«Wl)L (Wa) )+ Ar((Wy)1,(Wa)7)] (A14)
' @m" (2mn 27S, 2+t ’ ’ ’
where we define
AL((WoL,(v*vz)L):sL; [(W)) 12+ 2C (Wy), - (Wy),, (A15)

with S andC, given by Eqs(6.9 and(6.10, respectively. Since the transformatioi8) is orthogonal we have the simple
result forG,

G(tl,tg:(ﬁ) GL(E)1 (TG ()7 (1)) (A16)
depending on the rotated variable

() =M%(&) 5. (A7)

The longitudinal and transverse partstadire defined in analogy to those ¥t. The functionsG, and Gt appearing in Eq.
(A16) are explicitly given in Egs(6.7) and (6.9).

APPENDIX B

In this appendix we compute the integral
c a 2y A2 1 212 o\
J(s1,8p) = | d*xd®y[s11%,— S12%1/[Sp1y2— S22y |€x _E[X +y =2fx-y]/, (B1)

which is needed to evaluatg,(r,t) for n=d=2. Thejth component of; is written sjj - To rid ourselves of the absolute
values appearing in E¢B1) we make use of the identity

— v dz 19 e X 22212 B2
IxI= e \/_ 70z (B2)
and write
3o [0 dz 1 fdzd2 A B3
(81,82)= 70@\/—\/—2122 &Zlﬂzz xatyex (Zlaz2asleZ-X y) (B3)
with
A(21,25,51,5;,%,Y) = Z2(S11%p— S19X1) >+ Z3(Sa1y 2 — Soy 1) 2+ X2+ y2— 2f1X Y. (B4)

The integrations ovex andy in Eq. (B3) are Gaussian and so can be readily, if somewhat tediously, performed. One has

+o le d22 1 02 (277)2

—o 27 N2 2122 (921(722 /D(Zl,zz,gl,_gz) )

J(S1,8,) = (B5)

where the determinam is given by

D= (1+228,2)(1+238,%) — f2(2+ 225,%+ 235,%+ 222 5, - S,]%) + 1. (B6)
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The next step is to evaluate the derivatives with respezt emdz, appearing in Eq(B5). This can be done straightforwardly,
and one notices that a change of variables allows one to write the integral (BEBas a product of the amplitudes sf and
s, and an integral whose only dependencesprands, is through the dot-product form

g=11(s1-5,)% (B7)
Explicitly, one has
3(81,82) =27 y11841523(9) (B8)
with
~ 4o [1+29+(1-9)(yi+yd) +(1-9)%iy3
J =f dy,d B9)
(O ) ey (- gy (
|
This seemingly complex integral fal(g) is actually pleas- Cy 2B,
ingly simple and after some manipulations one has fr= §: 1- jx o (C3

~ 1./ 9 for small x. We now examind in the scaling regime and
41— 1./ 2 L g reg
J(g)=4y1 g+4\/§tan 1-¢g (810 use Egs(6.9) and(6.10 to write

1 1
APPENDIX C T L 2081\2
i 5g. () (%)
To examine the smalt-behavior of the defect correlation
functions we need to know the behaviorfoff;, andf, for  and
small x. In the theory we use here, which is discussed in
detail in[4], f is analytic at short-scaled distances and we C =— 1 [£"+f42(F)2] (C5)
have L 2da Y '
f(X)=1—ax?+Bx*+ - - -, (C1))  For smallx we again usé¢C1) and obtain
where o and 8 are constants determined in the theory. To C, 5
evaluatef; we write Ct (6.14) in terms off, as a function of fL= 5 1+0(x). (C6)

the scaled length:

¢ 1§ The key results here afg—1 while f, ——1 whenx—0.
Cy= E _ (%) This minus sign is ultimately responsible for the relation

~ L?x  2da x'
Gs(0)=—-G,(0) (C7)
where we have used the res8lf/L?=1/2da [4]. The result
(C2), together with the definitiori6.13 for S; and the ex- between the signed and unsigned defect correlation functions
pansion(Cl) lead to atx=0 [21].
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