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Vortex annihilation in the ordering kinetics of the O„2… model

Gene F. Mazenko and Robert A. Wickham
The James Franck Institute and the Department of Physics, The University of Chicago, Chicago, Illinois 60637

~Received 5 December 1996!

The vortex-vortex and vortex-antivortex correlation functions are determined for the two-dimensional O~2!
model undergoing phase ordering. We find reasonably good agreement with experimental and simulation
results for the vortex-vortex correlation function where there is a short-scaled distance depletion zone due to
the repulsion of like-signed vortices. The vortex-antivortex correlation function agrees well with experimental
and simulation results for intermediate- and long-scaled distances. At short-scaled distances the simulations
and experiments show a depletion zone not seen in the theory.@S1063-651X~97!00205-5#

PACS number~s!: 05.70.Ln, 64.60.Cn, 64.60.My, 64.75.1g
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I. INTRODUCTION

The late-stage ordering of systems in the process
breaking a continuous symmetry is dominated by the dyn
ics of topological defects. In the case of then-vector model
with the number of componentsn of the order paramete
equal to the spatial dimensionalityd one has point defect
that are vortices forn52 and monopoles forn53 @1#. We
focus mainly on the casen5d52 here. Because of the con
servation of topological charge, ordering in these syste
occurs through the charge conserving process of vor
antivortex annihilation. The statistical description of this a
nihilation process will be a central focus of this paper. W
present here a calculation for the separate vortex-vortex
vortex-antivortex correlation functions. Knowledge of the
functions is an important ingredient in understanding
vortex annihilation process. Since these functions contain
tailed information about the vortex correlations, comparis
of our results with simulation and experiment provides
most stringent test of the theory to date. In the original wo
@2# in this area only the signed defect correlation functi
was computed. The unsigned quantity is technically mu
more difficult to evaluate as we discuss in this paper. T
comparison of the result for the signed quantity with expe
ments and simulations was confused by the use of a th
@3# that led to unphysical singularities at short distances
this quantity. The source of this singularity was recently u
covered by us@4# and the theory reorganized so as to gi
physical results for the signed defect correlation functi
This development motivated us to make a renewed effor
evaluate the unsigned defect correlation function, with
results presented here.

We show in Fig. 1 the vortex-vortex correlation functio
for the two-dimensional O~2! model obtained from the
theory developed here and from cell-dynamical simulatio
by Mondello and Goldenfeld@5#. Experiments by Nagaya
et al. @6# on two-dimensionally aligned nematic liquid cry
tals, which mimic the O~2! model, have been able to measu
the dynamical vortex correlations. The experimental data
also shown in Fig. 1. There is reasonable agreement betw
the theoretical curve and the data from experiment and si
lation. All show a depletion zone at short-scaled distan
for like-signed defects. This is expected on physical grou
since like-signed defects repel one another. It is nontriv
551063-651X/97/55~5!/5113~13!/$10.00
of
-

s
x-
-

nd

e
e-
n
e
k

h
e
-
ry
n
-

.
to
e

s

re
en
u-
s
s
l

that we see evidence for a repulsive interaction. The vor
interactions emerge naturally in the theory from the equat
of motion for the order parameter. In Fig. 2 we show t
vortex-antivortex correlation function for theory, experime
@6#, and simulation@5#. There is good agreement between t
theory presented here and the experimental and simula
data at large- and intermediate-scaled distances. There
clear discrepancy between theory and simulation result
short-scaled distances. The theory shows a monotonic be
ior as the separation distance goes to zero. The simula
however, shows a maximum at short separation distan
and then falls rapidly to zero. Although somewhat noisy,
experimental data also have a depletion zone at short-sc
distances, in contrast to the theory. The depletion zone s
in the experimental and simulation data for the vorte
antivortex correlation function is harder to understand phy
cally since the defect pair is attractive and headed tow
annihilation. Some possible explanations will be presente
Sec. VIII. While the theory satisfies the sum rule implied
topological charge conservation, it does not appear that
general constraint is satisfied by the simulations.

II. MODEL

We consider then-vector model with O(n) symmetry,
which describes the dynamics of a nonco
served, n-component order-parameter fieldcW (1)
5„c1(1), . . . ,cn(1)…. Here we use the shorthand notatio
15(r1 ,t1). The order parameter evolvesvia the time-
dependent Ginzburg-Landau equation@3#

]cW

]t
5¹2cW 2

]V@cW #

]cW
, ~2.1!

which can be derived from a free energy containing a squ
gradient term and a potential term,V@cW #. We assume that the
quench is to zero temperature where the usual noise term
the right-hand side of Eq.~2.1! is zero @7#. The potential
V@cW # is chosen to have O(n) symmetry with a degenerat
set of equilibrium minima atc[ucW u5c0. Since only these
properties ofV@cW # will be important in what follows we
need not be more specific in our choice forV@cW #. It is be-
lieved that our final results are independent of the exact
5113 © 1997 The American Physical Society
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FIG. 1. The scaling formCvv ~3.19! as a function of the scaled lengthx5r /L(t) for the vortex-vortex correlation function of th
two-dimensional O~2! model. The solid curve is the result of the theory presented here. The solid dots (d) represent the simulation data o
Mondello and Goldenfeld@5#. The experimental data of Nagayaet al. @6# on two-dimensionally aligned nematic liquid crystals are a
shown. The experimental data were taken at timest54 sec (h), t58 sec (L), t512 sec (3), t516 sec (n), t524 sec (!), and
t532 sec (s) following the quench.
In
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ture of the initial state, provided it is a disordered state.
deed, it is well established@8# that for late timest following
a quench from the disordered to the ordered phase the
namics obey scaling. In this regime, where order increase
the defects annihilate, the system can be described in te
of a single growing lengthL(t), which is characteristic of the
spacing between defects. At late times the order-param
correlation function
-

y-
as
ms

ter

C~12![^cW ~1!•cW ~2!& ~2.2!

has an equal-time scaling form

C~r ,t !5c0
2F~x!, ~2.3!

whereF is a universal function, depending only onn and
d. The scaled lengthx is defined asx5r /L(t) with
e

such
FIG. 2. The scaling formCva ~3.20! as a function of the scaled lengthx5r /L(t) for the vortex-antivortex correlation function of th
two-dimensional O~2! model. The solid curve and the symbols are defined as in Fig. 1. The abscissa of the simulation data@5# is scaled to
give the best fit to the theory at intermediate to largex. The same rescaling factor for the simulation data is used in all the figures. No
rescaling of the experimental data@6# was necessary in any of the figures.
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55 5115VORTEX ANNIHILATION IN THE ORDERING . . .
r[ur u[ur22r1u. The scaling hypothesis states that all tw
point correlation functions can be written as universal fu
tions of x. It is also well established that, in the scalin
regime,L(t);tf. For the nonconserved models consider
here the exponentf51/2 @9#.

III. GENERAL FEATURES OF POINT DEFECTS

Let us briefly review the theoretical picture associa
with topological point defects. The results of this section
quite general and hold independent of the particular dyn
ics, such as Eq.~2.1!, or the approximation scheme, such
the Gaussian approximation, used to model the system.
vortex charge density can be written in the form

r~1!5(
a

qad„r12xa~ t1!…, ~3.1!

wherexa(t1) is the position at timet1 of the ath point de-
fect, which has a topological chargeqa . We will restrict the
analysis here to the case of charge61 vortices where
qa
251. This case dominates the late-stage ordering s
higher-charged defects are energetically unfavorable and
sociate into charge61 defects early on.

The next step is to note, as pointed out by Halperin@10#,
that the positions of defects are located by the zeros of
order-parameter fieldcW . Therefore the charged or signe
density for point defects is given by

r~1!5d„cW ~1!…D~1!, ~3.2!

where the JacobianD associated with the change of variabl
from the set of vortex positions to the fieldcW is defined by

D~1!5
1

n!
em1 ,m2 , . . . ,mn

en1 ,n2 , . . . ,nn

3¹m1
cn1

¹m2
cn2

•••¹mn
cnn

, ~3.3!

whereem1 ,m2 , . . . ,mn
is then-dimensional fully antisymmetric

tensor and summation over repeated indices is implied.
unsigned density,n(1), does not consider the charge of th
defect and is given by

n~1!5(
a

d„r12xa~ t1!…5d@cW ~1!#uD~1!u. ~3.4!

If we have products of such densities at equal tim
t15t25t, we write

r~1!r~2!5d~r12r2!(
a

d„r12xa~ t !…1 r̃~1!r̃~2!. ~3.5!

We use the tildes in Eq.~3.5! to indicate that the produc
r̃(1)r̃(2) contains only terms arising from different defec
We can also write

r~1!r~2!5d~r12r2!n~1!1 r̃~1!r̃~2!. ~3.6!

The equal-time charged or signed defect correlation func
is given by the average of Eq.~3.6!
-
-
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Gs~r ,t !5^r~1!r~2!&5n0~ t !d~r !1G̃s~r ,t !. ~3.7!

The first term in Eq.~3.7! represents self-correlations and

n0~ t !5^n~1!& ~3.8!

is the average unsigned point defect density at timet @11#.
The second term in Eq.~3.7! is

G̃s~r ,t !5^r̃~1!r̃~2!& ~3.9!

and measures the signed correlation between different
fects. It is easy to see that the signed defect correlation fu
tion, Gs , can also be decomposed as

Gs52Cvv22Cva , ~3.10!

whereCvv is the correlation function between like-signe
vortices andCva is the correlation function between vortice
and antivortices.

We define the equal-time unsigned defect correlat
function as

Gu~r ,t !5^n~1!n~2!&5n0~ t !d~r !1G̃u~r ,t ! ~3.11!

with

G̃u~r ,t !5^ñ~1!ñ~2!&. ~3.12!

As with the signed quantity, one can writeGu in terms of the
vortex-vortex and vortex-antivortex correlation functions:

Gu52Cvv12Cva . ~3.13!

Inverting Eqs.~3.10! and ~3.13! and using Eqs.~3.7! and
~3.11! one has

Cvv~r ,t !5 1
2 n0~ t !d~r !1C̃vv~r ,t !, ~3.14!

Cva~r ,t !5 1
4 @G̃u~r ,t !2G̃s~r ,t !#, ~3.15!

where

C̃vv~r ,t !5 1
4 @G̃s~r ,t !1G̃u~r ,t !#. ~3.16!

As one would expect, for the vortex-antivortex correlation
there is nod-function contribution from self-correlations.

We are interested in the correlations between differ
vortices and antivortices in the scaling regime, where
correlations assume scaling form dependent only on
scaled lengthx. We define

Gs~x![
G̃s~r ,t !

@n0~ t !#
2 , ~3.17!

Gu~x![
G̃u~r ,t !

@n0~ t !#
2 , ~3.18!

Cvv~x![
4C̃vv~r ,t !

@n0~ t !#
2 5Gs~x!1Gu~x!, ~3.19!

Cva~x![
4Cva~r ,t !

@n0~ t !#
2 5Gu~x!2Gs~x!. ~3.20!
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Both Cvv(x) and Cva(x) are normalized to approach 1 a
x→`.

Since the topological charge is conserved, one has
very important constraint@10,11#

E ddrGs~r ,t !50. ~3.21!

Using Eq.~3.7! this conservation law can be written in th
form

E ddrG̃s~r ,t !52n0~ t !. ~3.22!

Theory, simulation, and experiment indicate that the sca
results~3.17!–~3.20! and the result

n0~ t !5
A

Ld~ t !
, ~3.23!

whereA is a constant, hold. Inserting these results in E
~3.22! leads to the relation

E ddxGs~x!52
1

A
. ~3.24!

A measurement ofn0(t) and a choice forL(t) fixes A, al-
lowing one to check that the sum rule~3.24! is satisfied. As
shown in@2# our theoretical results satisfy this sum rule e
actly.

The results presented above are rather general. To ev
ateGs explicitly one can use the Gaussian closure appro
mation, as was done in@2#. The evaluation ofGu in this same
approximation is technically much more difficult than th
calculation ofGs because of the absolute value sign in t
definition~3.4! of the unsigned defect densityn(1). Thepur-
pose of this paper is to computeGu and thereby obtain
Cvv andCva . In Secs. VI and VII we carry out this calcu
lation with explicit results forn5d52. First, however, we
must briefly review the calculations of the order-parame
scaling function and the signed defect correlation funct
within the Gaussian closure approximation.

IV. THE GAUSSIAN CLOSURE APPROXIMATION

Substantial progress has been made in determining
order-parameter scaling functionF using the theory devel
oped in@12#. In this and related theories, one expresses
order parametercW (r ,t) as a local nonlinear function of a
auxiliary fieldmW (r ,t), which is physically interpreted as th
distance, at timet, from positionr to the closest defect. On
of the physical motivations for introducingmW (r ,t) is that it is
smootherthan the order-parameter field. Sharp interfaces
well-defined defects produce a nonanalytic structure in
order-parameter scaling functionF(x) at small-scaled dis-
tancesx, which is responsible for the Porod’s law decay se
in scattering experiments@13#. The expectation, however, i
that the auxiliary field correlation functionf (x), defined be-
low, will be analytic in this same distance range. In the c
of a scalar order parameter these expectations are supp
by the theory@12#. However, for the simplest theory@3# with
he
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n.1 this is not the case. One finds a weak nonanalytic co
ponent in f and, more significantly, forn52 one can trace
this non-analytic component to an unphysical divergence@2#
in the scaling form for the signed vortex correlation functi
Gs(x) at smallx. In previous work@4# for n52 we showed
how these problems can be resolved by taking seriously
assumption that the correlations of the auxiliary field a
indeed smoother than those of the order parameter. We
that it is possible to rearrange the theory such thatf is ana-
lytic in x if we extend the theory to include fluctuation
about the ordering field and treat the separation between
ordering field and the fluctuation field carefully.

More specifically we can decompose the order param
cW as

cW 5sW @mW #1uW . ~4.1!

sW is chosen to reflect the defect structure in the problem
is of O(1). uW represents fluctuations about the ordering fie
sW and is ofO(L22) at late times. The defect structure
incorporated by demanding thatsW satisfy the Euler-Lagrange
equation for the order parameter around a static defec
equilibrium. This determinessW as a function ofmW . Since we
expect only the lowest-energy defects, having unit topolo
cal charge, will survive to late times we obtain@3#

sW @mW #5A~m!m̂. ~4.2!

In @3# it was shown thatA increases linearly from zero nea
the defect core and relaxes algebraically to its ordered va
A5c0 for largem[umW u.

Evolution under Eq.~2.1! causescW to order and assume
distribution that is far from Gaussian. However, it is reaso
able to assume that the probability distribution for the aux
iary field mW will be near a Gaussian. Indeed, a simple a
successful assumption@14# to make is that the probability
distribution formW is Gaussian with the correlation functio
C0(12) explicitly defined through

^mi~1!mj~2!&5d i j C0~12!. ~4.3!

The system is assumed to be statistically isotropic and
mogeneous soC0(12) is invariant under interchange of it
spatial indices. For future reference we also define the o
point correlation function

S0~1!5C0~11! ~4.4!

and the normalized correlation function

f ~12!5
C0~12!

AS0~1!S0~2!
. ~4.5!

Sincemmeasures the characteristic distance between de
it is expected to grow asL in the late-time scaling regime
This means thatC0 andS0 grow asL2 at late times.

If mW is treated as a Gaussian variable then its probab
distribution is characterized by the single functionf . This
function can be determined by requiring that the equation
motion forsW be satisfied on average. In@4# it was shown that
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for n52 this requirement produces the following late-tim
scaling equation for the equal-time order-parameter corr
tions:

xW•¹W xF1¹x
2F2

p

4m
F1

p

2m
f ] fF50, ~4.6!

where, for generaln, F is related tof via

F5
n f

2p
B2S 12 , n11

2 DFS 12 , 12 ; n12

2
; f 2D . ~4.7!

Here B is the beta function andF is the hypergeometric
function @3,15#. In the derivation of Eq.~4.6! we have de-
fined the scaling length

L2~ t !5
pS0~ t !

2m
54t. ~4.8!

With the theory in this form there will be no leading sma
x nonanalyticities in the normalized auxiliary field correl
tion function f and the small-x divergence in the scaling
form for the signed vortex correlation function found in ea
lier theories does not appear. The calculation of the sca
form for F ~and thusf ) reduces to the solution of the non
linear eigenvalue problem~4.6! with the eigenvaluem. The
eigenvalue is selected by numerically@4# finding the solution
of Eq. ~4.6!, which satisfies the analytically determine
boundary behavior at both large and smallx.

V. THE SIGNED DEFECT CORRELATION FUNCTION

The calculation ofGs(r ,t) ~3.7!, carried out in@2#, begins
with the observation thatcW andmW share the same zeros, an
that near these zeros we can use Eq.~4.2! to write

cW 5a0mW 1b0m
2mW 1•••, ~5.1!

wherea0 andb0 are constants that depend on the potentia
is then easy to see that in Eqs.~3.2! and ~3.4! for r(1) and
n(1) we can replacecW (1) with mW (1) and the factors ofa0
andb0 all cancel. Then, assumingmW is a Gaussian field, it is
straightforward to see thatG̃s(r ,t) ~3.9! factors into a prod-
uct of Gaussian averages, which can be evaluated using
dard methods. One then finds thatG̃s(r ,t) indeed has the
scaling form~3.17! with Gs(x) given by @16#

Gs~x!5
G2~11n/2!

n! S 8m

S~2!D nFh~x!

x Gn21 ]h~x!

]x
~5.2!

with

h52
g f 8

2p
, ~5.3!

g5
1

A12 f 2
, ~5.4!

and
a-

g

It

an-

S~2![
1

n2
^@¹W mW #2&5

1

n
~5.5!

in this theory. The defect density is given by

n0~ t !5
n!

2n/2G~11n/2! F S~2!

2pS0~ t !
Gn/2. ~5.6!

Equation~5.6! leads to the resultn0;L2n, which is just a
restatement that there is scaling in the problem governed
the single lengthL(t).

Since f is determined in the theory for the orde
parameter correlation function, the functionGs(r ,t) is fully
determined in the scaling regime. The derivatives in E
~5.2! and ~5.3! make Gs(x) a rather sensitive function o
f (x) for small x.

VI. CALCULATION OF G̃u

The equal-time unsigned defect correlation functi
Gu(r ,t) ~3.11! can be evaluated through a series of steps.
work with generaln. The average that needs to be compu
is Eq. ~3.12!:

G̃u~r ,t !5^d@cW ~1!#uD~1!ud@cW ~2!#uD~2!u&. ~6.1!

The first step is to realize that one can replacecW bymW in Eq.
~6.1! and write G̃u in terms of integrals over the reduce
probability distributionG(j1 ,j2):

G̃u~r ,t !5E )
mn

d~j1!m
n d~j2!m

n uD~j1!uuD~j2!uG~j1 ,j2!,

~6.2!

where

D~j!5
1

n!
em1 ,m2 , . . . ,mn

en1 ,n2 , . . . ,nn
jm1

n1jm2

n2
•••jmn

nn ~6.3!

and

G~j1 ,j2!5K d@mW ~1!#d@mW ~2!#)
mn

d@~j1!m
n 2¹mmn~1!#

3d@~j2!m
n 2¹mmn~2!#L . ~6.4!

The indicesm andn range from 1 ton, unless stated other
wise. The Gaussian average definingG(j1 ,j2) is calculated
in Appendix A. It is shown there how one can writ
G(j1 ,j2) in terms of the longitudinal and transverse comp
nents of the rotated variables (t j )m

n ( j51or 2) defined by

~ t j !m
n 5M̂b

m~j j !b
n , ~6.5!

whereM̂ is an orthogonal matrix. We define the longitudin
piece oft j as (t j )L

n[(t j )1
n and write (t j )T to denote the trans

verse pieces: (t j )m
n with m.1. One then obtains
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G~ t1 ,t2!5S g

2pS0
D nGL„~ tW1!L ,~ tW2!L…GT„~ t1!T ,~ t2!T…,

~6.6!

where

GL„~ tW1!L ,~ tW2!L…5S gL

2pSL
D nexp2 gL

2

2SL

3F(
j

~ tW j !L
222 f L~ tW1!L•~ tW2!LG , ~6.7!

GT„~ t1!T ,~ t2!T…5S gT

2pST
D n~n21!

exp2
gT
2

2ST

3F (
m52

(
n j

@~ t j !m
n #2

22 f T(
m52

(
n

~ t1!m
n ~ t2!m

n G . ~6.8!

The longitudinal quantitiesSL , f L , and gL are defined in
terms ofC0 andS0 through

SL5S~2!2
g2

S0
~C08!2, ~6.9!

CL52C092
fg2

S0
~C08!2, ~6.10!

f L5
CL

SL
, ~6.11!

gL
25~12 f L

2!21. ~6.12!

The corresponding transverse functions are

ST5S~2!, ~6.13!

CT52
C08

r
, ~6.14!

f T5
CT

ST
, ~6.15!

gT
25~12 f T

2!21. ~6.16!

Since the matrixM̂ is orthogonal we have

D~j j !5D~ t j ! ~6.17!

so we may write

G̃u~r ,t !5E )
mn

d~ t1!m
n d~ t2!m

n uD~ t1!uuD~ t2!uS g

2pS0
D n

3GL„~ tW1!L ,~ tW2!L…GT„~ t1!T ,~ t2!T…. ~6.18!

Under the change of variables,
~ tW j !L5ASL
gL
2~sW j !L ~6.19!

and, form.1,

~ t j !m
n 5AST

gT
2~sj !m

n , ~6.20!

G̃u(r ,t) becomes

G̃u~r ,t !5S g

2pS0
D n SL~ST!n21

~2p!n
2 gL

2~n12!gT
2~n12!~n21!

3N~ f T , f L!, ~6.21!

where

N~ f T , f L!5E )
mn

d~s1!m
n d~s2!m

n uD~s1!uuD~s2!u

3exp2
1

2
@~sW1!L

21~sW2!L
222 f L~sW1!L•~sW2!L#

3exp2
1

2(
m52

(
n

$@~s1!m
n #21@~s2!m

n #2

22 f T~s1!m
n ~s2!m

n %. ~6.22!

Equation~6.21!, with the definition~6.22!, is one of the cen-
tral results of this paper. If we had taken this route in eva
ating G̃s we would have arrived at these same equatio
only without the absolute value signs in Eq.~6.22!. In the
next section we will examine then5d52 case and go fur-
ther to derive an expression forG̃u that is convenient for
numerical work.

However, first we examine the general expression~6.21!
for G̃u in the small-x limit. We show in Appendix B that, in
the scaling regime, asx→0, f T→1 and, surprisingly,
f L→21. To examine this limit forG̃u we make the change
of variables

~s1!m
n 5

1

AeT
fm

n 1
1

2
xm

n , ~6.23!

~s2!m
n 5

1

AeT
fm

n 2
1

2
xm

n ~6.24!

for m.1 with

eT52~12 f T! ~6.25!

and, form51,

~s1!L
n52

1

AeL
fL

n1
1

2
xL

n , ~6.26!

~s2!L
n5

1

AeL
fL

n1
1

2
xL

n , ~6.27!

with
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eL52~11 f L!. ~6.28!

Then aseT andeL go to zero the arguments of the expone
tials in Eq.~6.22! go over to

@~s1!m
n #21@~s2!m

n #222 f T~s1!m
n ~s2!m

n 5@fm
n #21@xm

n #2

~6.29!

for m.1 and

~sW1!L
21~sW2!L

222 f L~sW1!L•~sW2!L5@fW L#21@xW L#2 ~6.30!

for m51. The important point is that, aseL and eT go to
zero, the JacobiansD transform as

D~s1!5
21

AeL

1

~eT!~n21!/2D~f!, ~6.31!

D~s2!5
1

AeL

1

~eT!~n21!/2D~f!. ~6.32!

Thus the Jacobians differ only by a sign in this limit and w
have

uD~s1!uuD~s2!u52D~s1!D~s2! ~6.33!

asx→0. Since the scaling form for the unsigned defect c
relation functionGs(x) is, up to a factor of@n0(t)#2, given by
Eqs. ~6.21! and ~6.22! without the absolute value signs w
see thatGu(x) differs fromGs(x) only by a sign

Gu52Gs ~6.34!

as x→0. The relations~3.19! and ~3.20! then lead to the
results

lim
x→0
Cvv~x!50 ~6.35!

and

lim
x→0
Cva~x!522Gs~0!. ~6.36!

Thus there is a depletion zone at short-scaled distance
like-signed defects. From previous work we know th
Gs(0),0 @4# so the theory gives a nonzero, positive corre
tion at short-scaled distances for unlike-signed defects. Th
are general results and depend only on the Gaussian ass
tion, used to derive Eq.~6.21!, and the particular small-x
behavior off , which, as is shown in Appendix C, determin
the small-x behavior of the quantitiesf T and f L .

VII. TWO-DIMENSIONAL O „2… MODEL

We have not yet been able to explicitly evaluateGu(x) for
generaln5d, except for small and largex. Here we special-
ize to n5d52. Much theoretical work has recently bee
done on this case and detailed results are available for
auxiliary field correlation functionf (x). An additional moti-
vation for examining this case is that simulation and exp
mental results exist for the vortex-vortex and vorte
antivortex correlation functions.
-

-

for
t
-
se
p-

he

i-
-

If we now specialize Eqs.~6.21! and ~6.22! to n5d52
then the unsigned vortex correlation function is given by

G̃u~r ,t !5@n0~ t !#
2
2g2SL
~2p!4

gL
24gT

24N~ f T , f L! ~7.1!

with

N~ f T , f L!5E d2s1d
2s2J~sW1 ,sW2!

3exp~2 1
2 @sW1

21sW2
222 f LsW1•sW2# !, ~7.2!

where

J~sW1 ,sW2!5E d2xd2yus11x22s12x1uus21y22s22y1u

3exp~2 1
2 @xW21yW 222 f TxW•yW # !. ~7.3!

We have simplified the notation by writingsW i in place of
(sW i)L and usingxW andyW in place of (sW1)T and (sW2)T , respec-
tively. The j th component ofsW i is written si j . The quantity
J is evaluated in Appendix B with the clean result

J~sW1 ,sW2!52pgT
4usW1uusW2uJ̃~g!, ~7.4!

where

J̃~g!54A12g14Agtan21A g

12g
~7.5!

and

g5 f T
2~ ŝ1• ŝ2!

2. ~7.6!

Notice thatg depends only on the angle betweensW1 andsW2
and not on their magnitudes. We can then separate Eq.~7.2!
into an integration over magnitudes, followed by an over
integration over the angular piece:

N~ f T , f L!5~2p!2gT
4E

0

2p

du J̃~g!E
0

`

ds1ds2s1
2s2

2

3exp~2 1
2 @s1

21s2
222gLs1s2# !, ~7.7!

where we have defined

gL5 f Lŝ1• ŝ2 ~7.8!

andŝ1• ŝ25cosu. Expanding the exponential in Eq.~7.7! as a
power series ingL and performing the integrations over th
magnitudess1 ands2 we obtain

N~ f T , f L!5~2p!2gT
4E

0

2p

du J̃~g!

3(
l50

`
~gL! l

l !
2l11G2S l13

2 D . ~7.9!
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FIG. 3. The scaling formGs ~3.17! as a function of the scaled lengthx5r /L(t) for the signed vortex correlation function of th
two-dimensional O~2! model. Atx51 the lower solid curve is the prediction of the original theory@2,3# that does not treat fluctuations, an
the upper solid curve is the result for the theory presented here, which does include fluctuations. The symbols are defined as in
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The symmetries ofg and gL under u→u2p allow us to
restrict the region of integration in Eq.~7.9! and we use the
definition ~3.18! for the scaling form to write the final resu
for Gu :

Gu~x!5
2g2SLgL

24

p2 E
0

p/2

du J̃~g!

3(
l50

`
~gL!2l

~2l !!
22l11G2S 2l13

2 D , ~7.10!

whereSL , f L , and f T are now functions of the scaled leng
x. The integral overu and the sum overl have to be evalu-
ated numerically.

For largex the functionsf , f T , and f L are all small and
Eq. ~7.10! simplifies since only the first two terms in th
series need to be retained to give the essential physical
tures. In this limit the integral overu is easily performed and
one has

Gu511 f 21
1

4
~ f L

21 f T
2!2

4m

p
~ f 8!2. ~7.11!

Since all of f , f T , and f L decay ase2x2/2 for large x @4#,
Gu rapidly approaches 1 asx increases.

VIII. COMPARISON OF THEORY AND SIMULATION

In our previous work@4# we numerically solved the eigen
value problem~4.6! and determined the functionf (x) repre-
senting the scaling form for correlations in the auxilia
field. With this information we can use Eq.~7.10! to deter-
mineGu(x) since for eachx at which we knowf (x) we can
calculate f L , f T , andSL and perform the sum overl and
then the integration overu. The sum diverges asugLu→1
(x→0 and u→0) but since the smallestx we consider is
a-

x50.0001 this is not a real problem—we just have to sum
more terms to achieve a set accuracy. The integration o
u is straightforwardly accomplished using an open Newto
Cotes algorithm.

Using the relations~3.19! and ~3.20! we have calculated
the results forCvv(x) and Cva(x), which are presented in
Figs. 1 and 2, respectively. As expected,Cvv(x) has a deple-
tion zone at smallx, which has a characteristic sizex'1
@ ur u'L(t)#. In contrast,Cva(x) shows enhanced correlation
in the same range ofx. We present the results forGs and
Gu in Figs. 3 and 4. Also shown in Fig. 3 is the result of th
earlier theory@2,3# for Gs , which displays the divergenc
resulting from neglecting fluctuations. These four figures d
play the main results of this paper.

Also shown in these figures are the results of Monde
and Goldenfeld’s cell-dynamics simulation@5#, based on the
time-dependent Ginzburg-Landau equation for the O~2!
model. The lattice size used was 5123512. The simulation
data for the scaling forms of the vortex-vortex and vorte
antivortex correlation functions were taken directly fro
Figs. 8 and 9 of@5#. The experimental data of Nagayaet al.
@6# are also shown. Relations~3.19! and~3.20! were used to
calculateGs andGu for simulation and experiment. There
only one adjustable parameter in all these fits, which is
~unknown! proportionality coefficient between the scalin
lengthL(t) used in the theory and that used in experime
and simulations@17#. We use this freedom to adjust the hor
zontal scale of the simulation data in Fig. 2 to give the b
match between theory and simulation at intermediate to la
x. The same scaling factor is used to rescale the simula
data in the other three figures. It is amusing to see that in
3 this rescaling causes the minima of the simulation data
the theoretical curve for the earlier theory@2# to coincide. No
such rescaling of the experimental data was necessary.
ures 1 and 2 show reasonable agreement between the
retical curve and the data from experiment and simulat
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FIG. 4. The scaling formGu ~3.18! as a function of the scaled lengthx5r /L(t) for the unsigned vortex correlation function of th
two-dimensional O~2! model. The solid curve and the symbols are defined as in Fig. 1.
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except for the short-distance behavior ofCva . This discrep-
ancy is directly related to the behavior ofGs . Since we know
that the theoretical expression forGs satisfies the sum rule
~3.24!, the question is whether this sum rule is satisfied
the simulation and experimental data. We have found
the simulation data presented in@5# lead to the result

2AE ddxGs~x!50.8560.05, ~8.1!

which is less than the expected value of unity. We are abl
compute this quantity directly from the data contained
Figs. 8 and 9 of@5#, using the fact that in units of the scalin
length they use in these figuresn0(t)5L22 so A51. The
error estimate in Eq.~8.1! is due to the uncertainties in read
ing the data, which is somewhat noisy, from the figures
@5#. Since the value forA used in@6# is unknown and the
data are noisy, we have not attempted to calculate whe
the experimental data satisfy the sum rule. What could
count for the breakdown in the sum rule seen in simulatio
First, there is the possibility of a breakdown in scaling an
violation of the scaling relations~3.17! and ~3.23!. This
seems incompatible with both experimental and simulat
results when viewed as a function of time. A second, m
likely, possibility is that there are some missing vorte
antivortex pairs in the simulations. We speculate that th
may be a problem keeping track of annihilating pairs
short-scaled distances where they may have a very high
tive velocity @18#. This problem, which might also occur i
the experiments, may be the source of the short-distance
crepancy inCva between the theory and the data from expe
ments and simulations.

IX. CONCLUSION

Our work here has concentrated on the statistical pro
ties of point vortices in phase ordering systems. The co
y
at

to

n

er
c-
?
a

n
e
-
re
t
la-

is-
-

r-
e-

lations among like-signed vortices found here meet with
expectation that vortices with the same charge repel one
other at short-scaled distances and that screening of this
pulsive interaction causes the correlations to fall rapidly
zero at large-scaled distances. The case of correlations
tween unlike-signed vortices seems straightforward from
theoretical point of view. Since these pairs are attract
there is an increasing probability of finding pairs on th
way to annihilation as one goes to short-scaled distan
The experimental and simulation results seem at odds w
this simple physical interpretation. One argument around
monotonic behavior of the vortex-antivortex correlatio
function is that the annihilating pair is speeding up in the l
stage of annihilation and therefore the probability of findi
the pair separated by a short distance is commensurately
creased. In recent calculations@19#, using fundamentally the
same theory as the one presented here, one of us found t
mechanism already exists in the theory to produce large
tex velocities. These large velocities are inferred from
power-law tail in the vortex velocity probability distribution
Bray @20# has shown that this tail results from scaling arg
ments applied to the late stages of the vortex-antivortex
nihilation process. Thus it appears that this speeding up
cess is included in the present analysis.

In order to better understand the nature of the correlati
between vortex-antivortex pairs, it would be instructive
work out the joint probability of having a vortex at positio
r with velocity v2 given that there is a vortex at the origi
with velocity v1. This calculation is under current investiga
tion.

One of the remaining unresolved questions is as follo
Where are the missing vortex-antivortex pairs in the exp
ments and simulations? Further progress is hindered u
this discrepancy is understood.
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APPENDIX A

We derive an expression for the reduced probability d
tribution,
-

-

G~j1 ,j2!5K d@mW ~1!#d@mW ~2!#)
mn

d@~j1!m
n 2¹mmn~1!#

3d@~j2!m
n 2¹mmn~2!#L ~A1!

appearing in the integral formula~6.2! for G̃u(r ,t). We
evaluate this Gaussian average for equal timest15t25t. The
d functions can be represented as integrals and one has
ls

ices

arts
nal
G~j1 ,j2!5E dnq1
~2p!n

dnq2
~2p!n)mn

d~k1!m
n

2p

d~k2!m
n

2p
G~qW 1 ,qW 2 ,k1 ,k2!exp2 i ~kj !m

n ~j j !m
n , ~A2!

where we have defined

G~qW 1 ,qW 2 ,k1 ,k2!5^exp2 i @qW j•mW ~ j !2~kj !m
n ¹mmn~ j !#&. ~A3!

In these formulas summation over the repeated indicesm, n, and j is implied. The summation overj is from 1 to 2, while the
summation overm andn is from 1 ton, unless stated otherwise. Expression~A3! is of the standard form for Gaussian integra

K expS E d1̄HW ~ 1̄!•mW ~ 1̄! D L 5expS 12E d1̄d2̄HW ~ 1̄!•HW ~ 2̄!C0~ 1̄ 2̄! D , ~A4!

so a straightforward calculation yields

2lnG~qW 1 ,qW 2 ,k1 ,k2!52S0(
j
qW j

22S~2!(
mn j

@~kj !m
n #222C0qW 1•qW 212FC08@~k1!m

n q2
n r̂m2~k2!m

n q1
n r̂m#

1SC092
C08

r D ~k1!m
a~k2!n

a r̂m r̂ n1
C08

r
~k1!m

n ~k2!m
n G , ~A5!

where primes indicate differentiation with respect tor . This expression can be clarified if we introduce the orthogonal matr
M̂m

n where

M̂a
mM̂a

n 5M̂m
aM̂ n

a5dmn ~A6!

and

M̂1
m5 r̂m , ~A7!

and then transform to the new variables (Wj )m
n defined by

~Wj !m
n 5M̂a

m~kj !a
n . ~A8!

We then obtain

G~qW 1 ,qW 2 ,W1 ,W2!5exp$2 1
2 @A~qW 1 ,qW 2!1AL„~WW 1!L ,~WW 2!L…1AT„~W1!T ,~W2!T…1Ac„qW 1 ,qW 2 ,~WW 1!L ,~WW 2!L…#%, ~A9!

where (Wj )L
n5(Wj )1

n is the longitudinal part ofWj and (Wj )T is shorthand notation referring to the remaining transverse p
of Wj @(Wj )m

n with m.1#. With this choice of variables we notice thatG can be factored into a transverse and a longitudi

piece. We see that for our purposes we are not required to be more explicit than Eqs.~A6! and~A7! in defining theM̂m
n . The

quantities appearing in the exponential in Eq.~A9! are

A~qW 1 ,qW 2!5S0(
j
qW j

212C0qW 1•qW 2 , ~A10!

AL„~WW 1!L ,~WW 2!L…5S~2!(
j

@~WW j !L#222C09~WW 1!L•~WW 2!L , ~A11!
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AT„~W1!T ,~W2!T…522
C08

r (
m52

(
n

~W1!m
n ~W2!m

n 1S~2! (
m52

(
n j

@~Wj !m
n #2, ~A12!

Ac„qW 1 ,qW 2 ,~WW 1!L ,~WW 2!L…52C08@qW 1•~WW 2!L2qW 2•~WW 1!L#. ~A13!

One can integrate Eq.~A9! overqW 1 andqW 2 to obtain

G~W1 ,W2!5E dnq1
~2p!n

dnq2
~2p!n

G~qW 1 ,qW 2 ,W1 ,W2!5S g

2pS0
D nexpS 2

1

2
@AL8„~WW 1!L ,~WW 2!L…1AT„~W1!T ,~W2!T…# D , ~A14!

where we define

AL8„~WW 1!L ,~WW 2!L…5SL(
j

@~WW j !L#212CL~WW 1!L•~WW 2!L , ~A15!

with SL andCL given by Eqs.~6.9! and~6.10!, respectively. Since the transformation~A8! is orthogonal we have the simpl
result forG,

G~ t1 ,t2!5S g

2pS0
D nGL„~ tW1!L ,~ tW2!L…GT„~ t1!T ,~ t2!T… ~A16!

depending on the rotated variable

~ t j !m
n 5M̂b

m~j j !b
n . ~A17!

The longitudinal and transverse parts oft are defined in analogy to those ofW. The functionsGL andGT appearing in Eq.
~A16! are explicitly given in Eqs.~6.7! and ~6.8!.

APPENDIX B

In this appendix we compute the integral

J~sW1 ,sW2!5E d2xd2yus11x22s12x1uus21y22s22y1uexpS 2
1

2
@xW21yW 222 f TxW•yW # D , ~B1!

which is needed to evaluateGu(r ,t) for n5d52. The j th component ofsW i is written si j . To rid ourselves of the absolut
values appearing in Eq.~B1! we make use of the identity

uxu5E
2`

1` dz

A2p
S 2

1

z

]

]zDe2x2z2/2 ~B2!

and write

J~sW1 ,sW2!5E
2`

1` dz1

A2p

dz2

A2p

1

z1z2

]2

]z1]z2
E d2xd2yexpS 2

1

2
A~z1 ,z2 ,sW1 ,sW2 ,xW ,yW ! D , ~B3!

with

A~z1 ,z2 ,sW1 ,sW2 ,xW ,yW !5z1
2~s11x22s12x1!

21z2
2~s21y22s22y1!

21xW21yW 222 f TxW•yW . ~B4!

The integrations overxW andyW in Eq. ~B3! are Gaussian and so can be readily, if somewhat tediously, performed. One

J~sW1 ,sW2!5E
2`

1` dz1

A2p

dz2

A2p

1

z1z2

]2

]z1]z2

~2p!2

AD~z1 ,z2 ,sW1 ,sW2!
, ~B5!

where the determinantD is given by

D5~11z2
2sW2

2!~11z1
2sW1

2!2 f T
2~21z1

2sW1
21z2

2sW2
21z1

2z2
2@sW1•sW2#

2!1 f T
4 . ~B6!



,

5124 55GENE F. MAZENKO AND ROBERT A. WICKHAM
The next step is to evaluate the derivatives with respect toz1 andz2 appearing in Eq.~B5!. This can be done straightforwardly
and one notices that a change of variables allows one to write the integral in Eq.~B5! as a product of the amplitudes ofsW1 and
sW2 and an integral whose only dependence onsW1 andsW2 is through the dot-product form

g5 f T
2~ ŝ1• ŝ2!

2. ~B7!

Explicitly, one has

J~sW1 ,sW2!52pgT
4usW1uusW2uJ̃~g! ~B8!

with

J̃~g!5E
2`

1`

dy1dy2
@112g1~12g!~y1

21y2
2!1~12g!2y1

2y2
2#

@11y1
21y2

21~12g!y1
2y2

2#5/2
. ~B9!
n

i
w

To

ions
This seemingly complex integral forJ̃(g) is actually pleas-
ingly simple and after some manipulations one has

J̃~g!54A12g14Agtan21A g

12g
. ~B10!

APPENDIX C

To examine the small-x behavior of the defect correlatio
functions we need to know the behavior off , f T , and f L for
small x. In the theory we use here, which is discussed
detail in @4#, f is analytic at short-scaled distances and
have

f ~x!512ax21bx41•••, ~C1!

wherea andb are constants determined in the theory.
evaluatef T we writeCT ~6.14! in terms off , as a function of
the scaled lengthx:

CT52
S0
L2

f 8

x
52

1

2da

f 8

x
, ~C2!

where we have used the resultS0 /L
251/2da @4#. The result

~C2!, together with the definition~6.13! for ST and the ex-
pansion~C1! lead to
. D

a
tu
ca
nc
n
e

f T[
CT

ST
512

2b

a
x21••• ~C3!

for small x. We now examinef L in the scaling regime and
use Eqs.~6.9! and ~6.10! to write

SL5
1

d
2

1

2da
g2~ f 8!2 ~C4!

and

CL52
1

2da
@ f 91 fg2~ f 8!2#. ~C5!

For smallx we again use~C1! and obtain

f L[
CL

SL
5211O~x2!. ~C6!

The key results here aref T→1 while f L→21 whenx→0.
This minus sign is ultimately responsible for the relation

Gs~0!52Gu~0! ~C7!

between the signed and unsigned defect correlation funct
at x50 @21#.
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